Radel® R-5000 is a transparent polyphenylsulfone (PPSU) which offers exceptional hydrolytic stability, and toughness superior to other commercially-available, high-temperature engineering resins. This resin also offer high deflection temperatures and outstanding resistance to environmental stress cracking. Radel® polymers are inherently flame retardant, provide excellent thermal stability and possess good electrical properties.

General

<table>
<thead>
<tr>
<th>Material Status</th>
<th>Commercial: Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>Asia Pacific, Europe, Latin America, North America</td>
</tr>
</tbody>
</table>

Features

- Acid Resistant
- Autoclave Sterilizable
- Base Resistant
- Biocompatible
- Chemical Resistant
- Detergent Resistant
- E-beam Sterilizable
- Ethylene Oxide Sterilizable
- Flame Retardant
- General Purpose
- Good Dimensional Stability
- Good Electrical Properties
- Good Sterilizability
- Good Thermal Stability
- Heat Sterilizable
- High ESCR (Stress Crack Resist.)
- High Heat Resistance
- Hydrolytically Stable
- Radiation (Gamma) Resistant
- Radiation Sterilizable
- Radiotranslucent
- Steam Resistant
- Steam Sterilizable
- Thermal Aging Resistant
- Ultra High Toughness

Uses

- Automotive Applications
- Dental Applications
- Food Service Applications
- Hospital Goods
- Medical Devices
- Medical/Healthcare Applications
- Membranes
- Surgical Instruments

Agency Ratings

- FAA FAR 25.853a
- ISO 10993
- NSF STD-51
- NSF STD-61

RoHS Compliance

- RoHS Compliant

Automotive Specifications

- ASTM D6394 SP0312

Appearance

- Clear/Transparent

Forms

- Pellets

Processing Method

- Blow Molding
- Extrusion
- Film Extrusion
- Injection Molding
- Machining
- Profile Extrusion
- Sheet Extrusion
- Thermoforming

Physical

<table>
<thead>
<tr>
<th></th>
<th>Typical Value</th>
<th>Unit</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density / Specific Gravity</td>
<td>1.29</td>
<td>g/cm³</td>
<td>ASTM D792</td>
</tr>
<tr>
<td>Melt Mass-Flow Rate (MFR) (365°C/5.0 kg)</td>
<td>14 to 20</td>
<td>g/10 min</td>
<td>ASTM D1238</td>
</tr>
<tr>
<td>Molding Shrinkage - Flow (3.18 mm)</td>
<td>0.70 %</td>
<td></td>
<td>ASTM D955</td>
</tr>
<tr>
<td>Physical</td>
<td>Typical Value</td>
<td>Unit</td>
<td>Test method</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>0.37 %</td>
<td></td>
<td>ASTM D570</td>
</tr>
<tr>
<td></td>
<td>1.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechnical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Modulus</td>
<td>2340 MPa</td>
<td></td>
<td>ASTM D638</td>
</tr>
<tr>
<td>(3.18 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>69.6 MPa</td>
<td></td>
<td>ASTM D638</td>
</tr>
<tr>
<td>(3.18 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Elongation</td>
<td></td>
<td></td>
<td>ASTM D638</td>
</tr>
<tr>
<td>Yield, 3.18 mm</td>
<td>7.2 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break, 3.18 mm</td>
<td>60 to 120 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>2410 MPa</td>
<td></td>
<td>ASTM D790</td>
</tr>
<tr>
<td>(3.18 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>91.0 MPa</td>
<td></td>
<td>ASTM D790</td>
</tr>
<tr>
<td>(5.0% Strain, 3.18 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notched Izod Impact</td>
<td>690 J/m</td>
<td></td>
<td>ASTM D256</td>
</tr>
<tr>
<td>Tensile Impact Strength (3.18 mm)</td>
<td>399 kJ/m²</td>
<td></td>
<td>ASTM D1822</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deflection Temp. Under Load</td>
<td>207 °C</td>
<td></td>
<td>ASTM D648</td>
</tr>
<tr>
<td>1.8 MPa, Unannealed, 3.18 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass Transition Temperature</td>
<td>220 °C</td>
<td></td>
<td>ASTM E1356</td>
</tr>
<tr>
<td>CLTE - Flow (3.18 mm)</td>
<td>5.6E-5 cm/cm/°C</td>
<td></td>
<td>ASTM D696</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume Resistivity</td>
<td>9.0E+15 ohms-cm</td>
<td></td>
<td>ASTM D257</td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td>> 200 kV/mm</td>
<td></td>
<td>ASTM D149</td>
</tr>
<tr>
<td>0.0254 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.18 mm</td>
<td>15 kV/mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric Constant (3.18 mm, 60 Hz)</td>
<td>3.44</td>
<td></td>
<td>ASTM D150</td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame Rating<sup>3</sup> (0.76 mm)</td>
<td>V-0</td>
<td></td>
<td>UL 94</td>
</tr>
<tr>
<td>Optical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refractive Index</td>
<td>1.672</td>
<td></td>
<td>ASTM D542</td>
</tr>
<tr>
<td>Additional Information</td>
<td>Typical Value</td>
<td>Unit</td>
<td>Test method</td>
</tr>
<tr>
<td>Steam Sterilization - w/ Morpholine<sup>4</sup></td>
<td>> 1000 Cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drying Temperature</td>
<td>149 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drying Time</td>
<td>2.5 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing (Melt) Temp</td>
<td>360 to 391 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mold Temperature</td>
<td>138 to 163 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw Compression Ratio</td>
<td>2.2:1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drying Temperature</td>
<td>171 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drying Time</td>
<td>4.0 hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Zone 1 Temp.</td>
<td>338 to 388 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extrusion</td>
<td>Typical Value</td>
<td>Unit</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Cylinder Zone 2 Temp.</td>
<td>338 to 388</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Cylinder Zone 3 Temp.</td>
<td>338 to 388</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Cylinder Zone 4 Temp.</td>
<td>338 to 388</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Cylinder Zone 5 Temp.</td>
<td>338 to 388</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Adapter Temperature</td>
<td>327 to 371</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Melt Temperature</td>
<td>343 to 399</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Die Temperature</td>
<td>327 to 371</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Isothermal Stress vs. Strain (ISO 11403-1)

![Isothermal Stress vs. Strain Graph](image)
Secant Modulus vs. Strain (ISO 11403-1)

-20°C
23°C
120°C
Viscosity vs. Shear Rate (ISO 11403-2)
Notes
Typical properties: these are not to be construed as specifications.
1 NSF STD-51 compliant for NT only.
2 Tested at 82 °C (180 °F) (Commercial Hot)
3 These flammability ratings are not intended to reflect hazards presented by these or any other materials under actual fire conditions.
4 Cycles passed without cracking, crazing, or rupture.
Steam Autoclave Conditions:
- Temperature: 270°F (132°C)
- Time: 30 minutes/cycle
- Steam Pressure: 27 psig (0.19 MPa)
- Stress Level: 1000 psi (7.0 MPa) in flexure
- Additive: Morpholine at 50 ppm

www.solvay.com
SpecialtyPolymers.EMEA@solvay.com | Europe, Middle East and Africa
SpecialtyPolymers.Americas@solvay.com | Americas
SpecialtyPolymers.Asia@solvay.com | Asia and Australia

Safety Data Sheets (SDS) are available by emailing us or contacting your sales representative. Always consult the appropriate SDS before using any of our products.

Neither Solvay Specialty Polymers nor any of its affiliates makes any warranty, express or implied, including merchantability or fitness for use, or accepts any liability in connection with this product, related information or its use. Some applications of which Solvay’s products may be proposed to be used are regulated or restricted by applicable laws and regulations or by national or international standards and in some cases by Solvay’s recommendation, including applications of food/feed, water treatment, medical, pharmaceuticals, and personal care. Only products designated as part of the Solviva® family of biomaterials may be considered as candidates for use in implantable medical devices. The user alone must finally determine suitability of any information or products for any contemplated use in compliance with applicable law, the manner of use and whether any patents are infringed. The information and the products are for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right.

All trademarks and registered trademarks are property of the companies that comprise the Solvay Group or their respective owners.

© 2019 Solvay Specialty Polymers. All rights reserved.